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The problem of choosing the optimum arrangement and forces of the actuators on a beam acted upon by a transverse load is 
considered. Using Green's function for the corresponding boundary-value problem, explicit formulae are obtained which express 
the solution of the problem as a function of the points of application of the actuators, after which the problem is replaced by its 
discrete analogue. In the final analysis, the problem reduces to a problem of mathematical programming, which is investigated 
and solved for different cases of the specification of the loads. © 2005 Elsevier Ltd. All rights reserved. 

When designing structures with force units (actuators) which enable the structures to adapt to external 
loads, it is necessary to choose not only the optimal control of the actuators but, also, the number of 
such actuators and the positions at which they are placed [1]. Here, the force units are controlled by a 
local processor which is a part of the structure. The locations of the actuators and the instructions 
(programme) for the operation of the actuators are interrelated. The problem of designing the set of 
force units is solved below in the case of a beam. A special case of the problem has been considered 
previously, when the position and dimensions of a single actuator, occupying a section (of the piezoelastic 
cover plate type), were chosen [1]. 

1. FORMULATION OF THE PROBLEM 

Consider an elastic beam of constant stiffness acted upon by a specified force F(x). In addition to the 
force (x), actions, in the form of a force or moments of intensityp(x) which are created by the actuators, 
can be applied to the beam. 

The locations of the actuators and their forces are not specified in advance and only the constraints 
on these forces are given. It is required to find the locations of the actuators and their forces which 
minimize the deflection of the beam u(x) when x e [0, 1]. where x = 0 and x = 1 are the coordinates 
of the ends of the beam. 

In Figs 1 and 2, diagrams, which explain the idea of force and moment actuators, are shown for a 
rigidly clamped beam (Fig. 1) and for cantilever beams (Fig. 2). A rigid body (the ground, a housing, 
etc.) is indicated by hatching. The force actuators are represented by the squares. The piezopatches, 
which are actuators of moments, are shown conventionally on the right-hand side of Fig. 2. 

The moments produced by the force actuators are shown in the scheme on the left-hand side of 
Fig. 2. The moment on the ith pillar is Mi = h(Pi -Pi-1),  where h is the height of the pillar andpi is 
the force produced by the ith force actuator. After the moments Mi have been determined, we find the 
forces 

Pi = P i -  1 - Mi /h ,  P1 = - M ] l h  

It is often easier to create pulling forces than pushing forces (a pushing force is created by the leftmost 
actuator in Fig. 2). By locating a symmetric set of actuators under the beam, it is only possible to create 
moments by applying pulling forces. 

tPrikl. Mat. Mekh. Vol. 69, No. 1, pp. 94-105, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.01.009 
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Fig. 1 

Fig. 2 

It is required to determine where the actuators have to be replaced, what the magnitude of their 
forces must be and when which groups of actuators must be switched on (as a function of the magnitude 
and position of the external load at a given instant). 

The locations of the actuators and their forces can be described by a single function p(x) using the 
following rule: ifp(x) = 0, there is no actuator at the point x and, ifp(x) ~ 0, there is an actuator at the 
point x which acts with a force p(x). 

The deflection u(x) of the beam under the action of the force F(x) and the force actuators (force 
units which create additional force applied to the beam) of magnitude p(x) is determined from the 
solution of the equation [2] 

IV 
u = p + F (1.1) 

with the boundary conditions 

u(O) = u(1) = O, u'(O) = u'(1) = 0 (1.2) 

(the condition of rigid clamping is considered here but other conditions can be used). 
When moment actuators (force units which create additional moments in the beam) of magnitude 

p(x) are used [1], we have the equation 

(u" + p)" = F (1.3) 

with the same boundary conditions (1.2). 
Here, the (constant) stiffness of the beam is taken to be equal to unity, which does not lead to any 

loss in generality of the treatment. 
In the above formulation, the classA, to which the functionp(x) belongs, ha s still not been specified 

(that is, the type of actuators has not been specified). We will consider control forces p(x) from the 
class (henceforth, summation is carried out f romj  = 1 t o j  = m) 

{~,pjS(x-yj)} (1.4) 

where 8(x) is the delta-function. This means that point actuators are used. Other classes of functions 
such as constants in sections, which are a model of piezopatches, can also be employed [1]. 

We take the constraint on the actuator forces in the form 

a _ p~ _< b (1.5) 

that is, the actuators can create forces of any magnitude and sign in the range [a, b]. 
It is required to minimize the deflection of the beam u(x) along its length [0, 1], that is, to solve the 

problem 

[[U[[clo, 11 - maxx~ to, ll[u(x)] --~ rain (1.6) 
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The minimization is carried out using the values ofp(y) which satisfy condition (1.5) and, at the same 
time, u(x) is determined by solving problem (1.1), (1.2) or (1.3), (1.2). 

Remark. If there are no constraints on the forces generated by the actuators, problem (1.1), (1.2), (1.5) has the 
trivial solution p(y) = -F(y), which corresponds to min -- 0 in (1.6). When the constraints (1.5) or constraints 
associated with the class of controls A are present, the solution p(x) = -F(x) may turn out to be impermissible. 
The requirement concerning the use of a finite number of actuators is a typical constraint which leads to the fact 
that the solutionp(x) = -F(x) will be impermissible. For example, the trivial solution will be impermissible in the 
case of the class of controls (1.4). 

The solutions of problems (1.1), (1.2) (k = 1) and (1.3), (1.2) (k = 2) can be written in the form [3] 
(integration is henceforth carried out over the range [0, 1]) 

u(x) = IL(x, y)F(y)dy + Ik(x), Ii(x) = IL(x, y)p(y)dy, 12(x)= IM(x, y)p(y)dy (1.7) 

L(x, y) and M(x, y) are the fundamental solutions [3] of problems of the deflection of a beam under 
the action of a point force and a point moment, that is, 

L TM = ~ ( x -  y), M Iv = - 8 " ( x -  y) (1.8) 

with boundary condition (1.2). 
The functions L(x, y) and M(x, y) can be found in explicit form. They are third-degree polynomials 

which are "matched" at the point x = y in accordance with the right-hand sides of Eqs (1.8). A simple 
computer program has been written for determining them. 

Discretization of  the problem with respect to the variable x. The use of the quantity I I u I I ct0,1] implies a 
consideration of lu(x) l for a finite number of points. In order to avoid the problems which are associated 
with this, we will consider the maximum of u(x) at a bounded number of points {xl, . . . ,  xn} c [0, 1], 
which we shall call points of deflection observation. Naturally, the question arises regarding the difference 
between II u II cI0, 1] and II u II = max/= 1 ..... n l U(Xl) I. 

The estimate 

I n ( X )  - u(xi)[ <- (llfllc[0, 11 + [Ipllc[0, ll)lX-Xil 4/4! 

holds for the solution of Eq. (1.1). 
If the points {xl, . . . ,  xn} are uniformly distributed in the range [0, 1] with a step size A, then 

IIlullct0,1]- Ilull[ (llFII[0, 1] -t-Ilpll[0, ,1) A4/4! 

The discretization with respect to the variable x, when the step size of the subdivision is reduced, is 
based on this. 

The discrete problem. Suppose {Yl . . . . .  Ym} are the points of a possible arrangement of the actuators. 
The solution of the two problems (1.7) forp(y) from the class (1.4) takes the form 

U(Xi) -~ G(xi) + ELi jp j ,  G(x) : re(x,  y)F(y)dy (1.9) 

where Lij = L(xi, yj) for problem (1.1), (1.2), Lij = M(xi, Yi) for problem (1.3), (1.2), G(x) is a known 
function andpj are the forces of the actuators at the pointyj (pj = 0 means that there is no actuator at 
the point yj). 

The basis of the discretization with respect to the variable p will be given below. 
Introducing the vectors 

u = { u ( x i ) , i =  1 . . . . .  n } e  R ~, y j  = {Lij,  i =  1 . . . . .  n } e  R", 

Y0 = {G(xi), i = 1 .... .  n} ~ R ~ 
(1.10) 

the solution (1.9) can be written in the form 

u = Y0 + ~ Y j P j  ~ Rn (1.11) 
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The discretization of the problem corresponding to problem (1.6) has the form 

• [lull ---) m i n  

The vector u is specified by equality (1.11) and the values ofpj satisfy constraint (1.5). 

(!.12) 

2. T H E  SET  OF P O S S I B L E  V A L U E S  OF T H E  D E F L E C T I O N S  AT 
T H E  P O I N T S  OF O B S E R V A T I O N  IN T H E  CASE OF C O N S T R A I N E D  

A C T U A T O R  F O R C E S  

Introducing the new variable qj according to the rule 

pj = a+kq j ,  k = b - a ,  q j~  [0,1],  

instead of (1.11) we obtain a relation which differs from (1.11) in the free term and the normalizing 
factor k. We have 

u = Y o + k Z y j q j ~  R n, O<qj< 1; Y0 = Y 0 - £ Y j  •(2.1) 

The right-hand side of the first equation of (2.1) with the above-mentioned constraint on the values 
of qj is a set kP which has been shifted by the vector Y0, where 

P = { £ y j q j :  0 < qj _< 1 } (2.2) 

Tosolve  problem (1.12), (1.11), (1.5), it is therefore necessary to describe the set P (2.2). 
We consider the points {Yl, ... , Ym, Ym + 1 = 0} and form a finite number of sums 

£ y j s j  = Y,, s = 1 . . . . .  N; N = m + ( m - 1 ) + . . . + l  = ( m + l ) m l 2  (2.3) 

where sj takes the values 0 or 1. 

Assumption; The equality P = conv{Ys, s = 1 . . . .  N} holds (cony denotes a "convex combination"). 
Actually, the assumption asserts that, for any point y ~ P, numbers {~tn} and vectors {Yn} are found 

such that 

0 <  I.t n < 1, txl + " ' "  + ~N = 1, Y I ~ I  + " "  + YN~N = Y (2.4) 

or, by virtue of the definition of the vectors Y,, (2.3) 

1 1 N N  
~.~yjsjg I +,. .  + Z y  j Sj ~'N = Y 

Equality (2.5) will be Satisfied if, for any 0 < qj _< 1, the problem 

1 N 
sj p.l + ... + s] gN = qj 

( 2 . 5 )  

(2.6) 

with the condition 2.4 is solvable. We recall that ~ takes the values 0 and 1, and that {~}  satisfy conditions 
(2.4). The sums Slga + ... + sN~N, where the components of the vector s n = (s'~, ... , S~v), s 7 take the 
values 0 or 1, with condition (2.4), specify a unit hypercube in R m [4]. The vector q with the coordinates 
qj, 0 < qj < 1 belongs to the unit cube, and, consequently, problem (2.4), (2.6) is solvable. 

Note that P = conv{Y~, s = 1, . . . ,  N} is a polyhedron. 

Corollary. By virtue of the assumption and formula (2.1), the polyhedron K = Y0 + kP can be written 
in the following form. We form the finite sums ~,yjsj = Z~ (s = 1, . . . ,  N) ,  where sj take the values a or 
b. Then 

K = conv(Zs, s = 1 . . . . .  N} (2.7) 
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3. S O L U T I O N  OF THE P R O B L E M  IN THE CASE OF A CONSTANT 
E X T E R N A L  LOAD 

Taking into account the results in Section 2, we conclude that problem (1.11), (1.12), (1.5) is equivalent 
to the following problem 

Ilu[] ~ min, u ~ K (3.1) 

that is, the problem reduces to minimizing the function I lull in the polyhedron K (2.7). An attempt 
can be made to solve this problem using the methods of optimization theory. However, it can be solved 
in a much more simpler manner if a geometrical analysis of the set of possible deflections of the beam 
K and of the set Ilutl - c is carried out. 

The polyhedron K. Consider the sums Y, yjpj in which R of the quantitiespj are non-zero and the remaining 
m - R of the quantities pj are zero. These sums form the polyhedra 

PR = c o n v { y ~ y j s j ; s j = 0  or s j = l }  

and, moreover, only those yj for which pj ~ 0 occur in a sum, that,, is, each polyhedron Pn corresponds 
to the operation of R actuators. We shall call these polyhedra polyhedra of level R". The equahty 
P = uPn holds. Suppose a point u ~ P. Then, it belongs to a certain polyhedron PR, that is, the 
displacements u at the points of observation can be realized using the R actuator corresponding to the 
polyhedron PR. 

The polyhedron K and the cube D(c) touch a certain point Xc. As a result, we arrive at the problem 

Yll-tl + ... + YN~IN = X c, 0 < gn < 1, gl + " ' "  + ~N = 1 (3.2) 

This is a so-called problem of convex combinations [5]. A method for solving it has been presented 
earlier in [5]. 

We note that, in the case being considered, the set {qj} is of interest, that is, the solution of problem 
(2.1), rather than {gn} which is the solution of problem (3.2). In order to obtain the solution of problem 
(2.1), we recall that any vector Ys is a sum of the form ~yjsj. Then, if a vector yj occurs with non-zero 
coefficients sj in the sums forming the vectors Ys(1), . . . ,  Ys(p), then qj = ~ s ( 1 )  -1- . . .  --I- [.ts(p). 

The condition ][u[[ < c. This condition (by virtue of the definition of [lull (3.1)) defines a cube D(c) 
with edgesxi = -+c. As the parameter c increases from zero to infinity, this cube increases from a point 
(the origin of the coordinate system when c = 0) to infinity (when c ---) oo). 

It is now possible to solve problem (3.1). 

Value of  the minimum inproblem (3.1). Two cases are possible: 0 ~ K, when minu~ Kllull = c > 0 and 
0 ~ K, when min,  ~ K ll u I I = 0. 

In the case when 0 ~ K, when c = 0, the polyhedron D(c) coincides with the origin of the coordinate 
system. We shall increase the value of the parameter c, and, at the same time, the cube D(c) will be 
enlarged. If the polyhedron K does not contain the origin of coordinates, then, at a certain value of the 
parameter c*, the enlarging cube D(c) touches K (Fig. 3). This gives the solution of problem (3.1): the 
value c*, at which the first touching occurs, is the value of the minimum in problem (3.1). 

In the case when 0 s K, zero values can be assigned to the deflections at the points of observation. 
In other respects, the solution is similar to that described above. 

4. BASIS OF THE D I S C R E T I Z A T I O N  OF THE P R O B L E M  W I T H  
R E S P E C T  TO THE V A R I A B L E  p 

Consider expression (1.7) in the case when the discretization with respect tox has been carried out and 
that with respect t op  has still not been carried out. At the points of observation of the deflections , we 
obtain the equality 

u = Yo + IL(y )p (y )dy  

u = {u(xi), i = 1 . . . . .  n} ~ R", L(y) = {L(xi, y), i = 1 . . . . .  n} ~ R", (4.1) 

Y0 = {G(xi), i = 1 . . . . .  n} ~ R" 
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K 

D(c) 

Fig. 3 

We introduce the pair of lines F = {x = aL(y), x = bL(y) :y s [0, 1]. The integral on the right-hand 
side of equality (4.1) with conditions (1.4) and (1.5) defines a cone Pa = conv{F, 0} with base 
p0 = convF and vertex at zero. This follows from the corollary presented in Section 2 and the fact that 
the convex shell of any set is formed by convex combinations of a finite number of points of this 
set [4]. Equality (1.11) defines a cone Kc = Pc + Y0 (the cone Pc, shifted by the vector Y0) with base 
K o = eO + Y0- 

The discretization used in Section 1 is an approximation of the line F by a broken line with vertices 
at the Points {Ys ~ F} and the approximation of the curvilinear cones by the polyhedral cones K and 
P. The quality of the approximation improves as the number of points increases. 

We will now give a general characteristic of the method being used. Expression (1.7) can be considered 
as an integral functional F'A ~ C([0, 1]). Then, the set of deflections of the beam under the action of 
actuators of intensityp ~ A is F(A), the image of the setA in the case of the mapping F. The discretization 
carried out above corresponds to the approximation of the setsA and F(A) by finite sets. At the same 
time, it turns out that the finite dimensional approximation F(A) is quite easily calculated in an explicit 
form as a convex combination of known points. 

5. A V A R I A B L E  E X T E R N A L  L O A D .  T H E  C H O I C E  OF T H E  L O C A T I O N  
O F  T H E  S Y S T E M  OF A C T U A T O R S ,  T H E I R  F O R C E S , O R D E R  OF 

T H E  S W I T C H I N G  ON OF G R O U P S  OF A C T U A T O R S  AND 
I N S T R U C T I O N  TO T H E  B E A M  P R O C E S S O R  

We will consider the case when the external load depends on a parameter: F -- F(x, t), x ~ [0, 1], and 
t E L = [0, 7] is the parameter. The external load, which the actuators attempt to "compensate", was 
fixed above. The effective position of the actuators and their forces were uniquely determined. If the 
external load is variable, then its own set of actuators for each load is necessary to "compensate" it. If 
the load can take many different values, then the straightforward application of the theory from the 
preceding section can lead to the requirement that a large number of actuators are used. We shall show 
that the problem can be solved using a restricted set of actuators. 

Proceeding as above, we arrive at the expressions 

u(x, t) : IL(x, y)F(y, t)dy + IL(x, y)p(y, t)dy (5.1) 

u(x, t) = IL(x, y)F(y, t)dy + IM(x, y)p(y, t)dy (5.2) 

which differ from (1.7) in that they depend on the parameter  t. From the start, the external load 
F(y, t) depends on t and, by virtue of this, both the deflections u(x, t) and the controlsp(y, t) also become 
dependent on t. Next, we transfer from (5.1) or (5.2) to the problem (compare with problem (3.1)) 

[lu(t)ll ~ min, u ~ K(t), t ~ [0, T] (5.3) 

where 

K(t) = conv{Ys, s = 1 . . . . .  N} + Yo(t) ~ R n (5.4) 
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Note that, in expression (5.4), the vector Y0(t) only depends on t (see Section 2 for the definition of 
the vectors {Ys, s = 1, . . . ,  N} and Y0 and the number N). This is important in the further treatment. 

Two control methods are possible: (1) problem (5.3), (5.4) is solved for each value of the parameter 
t; (2) problems (5.3), (5.4) are first solved for different t • [0, T] and the solution obtained is subsequently 
used for a given t. The systems being considered are sometimes referred to as "smart" systems. In these 
terms, it is possible to say that two levels of "smartness" of a system can be distinguished. 

1. A "universal" system. The system has a large number of actuators or actuators can be placed in 
specified positions and, by solving problem (5.3), (5.4), it calculates which actuators have to be switched 
on and their forces, starting from the condition D(c) ~ K(t) ¢ O. In this case, the system can be adjusted 
(if this is possible in general) under any external load. 
2. A system acting according to the "if-then"principle. The system switches on or switches off actuators 
according to the rule: if <current value of the load parameter> then <switch on group of actuators from 
the list>. This system can only be adjusted under an active external load from a known class. 

The first case is not achieved in practice in pure form. We shall therefore dwell on the second case. 
We select a number c such that D(c) n K(t) ¢ O for all t • L = [0, T], which is always possible. In 

this case, when t • L, the polyhedron K(t) describes a certain trajectory inR n which always has common 
points with the cube D(c). It is necessary to find these points, for which it suffices to indicate the set 
of points Xl, . . . ,  XM in the polyhedron K(0) which are such that just one of the points xi + y0(t) lies in 
D(c) for any value of the loading parameter t. In addition, it is desirable that there should be as few 
such points as possible. 

We will now explain this requirement. The point at K(0) corresponds to a system of actuators: The 
systems of actuators, corresponding to the points Xl, . . . ,  XM, solve the problem (actually, when the 
external load is such that the point xi + y0(t) belongs to D(c), it is necessary to switch on the system of 
actuators corresponding to the point xi). From a practical point of view, it would be desirable to have 
fewer actuators. The solution of the problem within the framework of an "if-then" control is possible 
by virtue of the fact that, during the continuous motion of the polyhedron K(t), its subsets PK 
corresponding to the systems of actuators, intersect the cube D(c) at values of t from a certain range 
[t~, tb]. A finite number of such ranges [ta, tb] covers the whole of L = [0, T]. 

The following algorithm is proposed for choosing the points. 
0. We find the values L0 of the loading parameter t for certain y0(t) • D(c). This case corresponds 

to the fact that, without the action of the actuators, the deflection of the beam does not exceed a value 
c. The set L/Lo of values of the parameter remains. 

1. We consider a point Xc at which the polyhedron K(t) touches the cube D(c) (the worst version). 
It is necessary to have the system of actuators corresponding to this case. We find the values L c of the 
loading parameter t for which Xc • D(c). If there are several such points x~, we repeat the procedure 
for each points. As a result L~o~L c remains. We then operate with iterations which can depend on our 
choice of points in the polyhedron (see below). 

2. Accompany the exit of the points of contact Xc from D(c), the subsets of the polyhedron K(t) enter 
the cube D(c). The polyhedron K(0) is subdivided into subsets PK. We choose PK, starting out from the 
following conditions: 

(a) K is the smallest possible number; 
(b) {PK + y0(t)} n D(c) ¢ ® for the greatest possible number of values of the parameter t. 
3. We repeat stage 2 until we have exhausted all the values of the parameter t. 
It can be seen that stage 0 and 1 of the algorithm are uniquely determined, but stage 2 admits of a 

certain arbitrariness. As the result of the application of the algorithm, we obtain a finite number of 
schemes from which it is possible to choose the preferable scheme. 

Sensors and the processor in the system. If the system is controlled according to the rule: if t e L¢, then 
<switch on a group of actuators from the list>, it is necessary to take care determining the loading 
parameter t. It would be convenient to determine the current loading parameter t in terms of the current 
characteristics of the deformation of the beam (the displacements etc.). It needs to be kept in mind 
that control actionsp can be applied to the beam simultaneously with an external load F(x, t). Suppose 
there is a functional ~(u, p) such that t = ~(u(x, t), p(t)). By measuring (using sensors, for example) 
the current value of u(x, t) and calculating the value of the functional qs, we can determine the value 
of the loading parameter t. 

The calculations and switching of the actuators described above require the existence of a processor 
which generates these actions. These operations are quite simple and, therefore, the processor does 
not need to have a higher power. 
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The form of the functional q~ is substantially associated with the specific class of loading. For a specific 
class of loadlngsl it is fairly simple to construct the functional q5, but it is not convenient to give a general 
method for its construction here. " : 

"Knowledge" in the system i The set of instructions of  the "if-then" form is, treated as knowledge [6]. 
As we see i knowledge is a Part of a "smart" structure. A "Universal" system does not lock knowledge 
but it can be  inefficient for purposes of operational control, since it solves a rather large problem. 
A system of the "if-then" type uses simple instruction s and can be fast acting even with a low-power 
processor. In this connection, it is suitable for purposes of operational control. The following separation 
of the functions of the systems of an equal level of "smartness" mentioned above is possible. The 
"if-then" system accomplishes operational control of a structure in situations which are described in 
these instructions. The "Universal" system, While not participating directly in the operational control, 
carries out instructions for the "if-then" system. As a rule; the operational control system is a part 
of the structure (with the exception of cases of remote control). The system for carrying out the 
instructions can be both a part of the structure as well as an external system. Analogues of the systems 
which have been described and techniques for their distribution in biological and social systems can 
be imagined. 

6. E X A M P L E  

The design of a "smart!' structure consists of two components: the structure itself (the type, number 
and siting of the actuators) and the program (instructions for the control of the actuators) which is 
introduced into the built-in processor of the structure as a computer program. 

The example considered below is carried out, in particular, with the aim of showing that, in the 
proposed method, the structural and program parts of the design are not simply interrelated (a statement 
concerning their "'interelatedness" has become a common topic for papers on "smart" structures, see 
[7, 8] and the bibliography these) and they are determined as parts of the solution of the same problem. 

We will consider a beam corresponding to the range [0, 1] of thex axis. An external point load (Fig. 1) 
moves along the beam between the points x = 0 and x = 0.5. We shall observe t he  deflections at the 
pointsxt = 0.25 andx;  = 0.5. We will give the possible locations of the actuatorsA1,A2,A3 at the points 
Yl. = 0.25,y2 = 0.5 andy3 = 0.75. : 

We :take the constraints on the forces of the actuators (1.5) in the form 0 <_pj _ ! (a = 0, b =  1). 
The evolution of the polyhedron K(t) in the case of the problem being considered is shown in 

Fig. 4. The parameter t = 0.05i (i = 0, . . . ,  10) corresponds to an external load, which moves from one 
end of the beam to its centre in steps of 0.05 (the positions of the cone K(t) for i = 0, 5, 8,. 9, 10 are 
shown in Fig. 4). In the cas e under consideration, the cube D(c) converts into a square, since the problem 
is two-dimensional (all points of observation of the deflection are taken). The square D(c) was found 
as the smallest square which has an intersection with all of the polyhedrons K = K(t), t = 0.05i 
(i = 0 ..... ,10) . . . .  

Determination of the optimal set of actuators. The set of actuators and the positions in which they are 
placed are determined from a qualitative analysis of Fig. 4. It is necessary to establish precisely which 
"subpolyhedrons" of the polyhedron K(t) = 1457638 are intersected by the square D(c) (the small square 
at the origin of coordinates in Fig. 4). In Fig. 4, point 8 corresponds to the deflections of the uncontrolled 
beam at the points xa = 0.25 and x2 = 0.5. The segments 18, 28 and 38 (of the level 1 polyhedron) 
correspond to the operation of a single actuator A1, A2, A3 respectively, and the parallelograms 3158, 
8142 and 8263 (of the level 2 Polyhedron)correspond to t h e  operation of the pairs of actuators 
A1 + A3,A1 + A2,A2 + A3 respectively. The remaining part of the polyhedron K(t), which, in this case, 
is the parallelogram 2476, corresponds to the operation of all three actuators. 

When i < 5, minimum deflections can be maintained by the single actuatorA1 (at the pointyl = 0.25) 
and its force increases as the point of application of the force F(t) advances to the middle of the beam. 
Subsequently, when i = 6, 7, 8, the actuator A 1 can be used (at the point Yl = 0.25) together with the 
actuatorA2 (at the pointy2 = 0.5) or the actuatorA3 (at the pointy3 = 0.75). When i = 9,A 1 can be 
used together withA2 (butA1 andA3 can no longer ensure optimal control) or all three actuators can 
be used. When i = 10, the single actuatorA2 canbe used. In the final analysis, we arrive at the conclusion 
that the minimum number of actuators is equal to two and these will be the actuatorsA 1 andA2 (located 
at the pointsyl = 0.25 andy 3 = 0.75). Note that the use of the single actuatorA2 (at the middle of the 
beam) does not provide the best solution. The action of a single actuator with a different force is 
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represented by the line 82. Except for the cases when i = 0 and i = 1, i = 10, this line did not intersect 
the square D(c), that is, the single actuator A2 cannot accomplish optimal control. 

The maximum deflection of the controlled beam occurs when i = 3 (the external force is applied at 
the pointy = 0.15). In the case of the uncontrolled beam, the maximum deflection uf occurs when the 
force is applied at the point 0.5. The relative decrease in the deflection due to the control uf/c = 78 
(see Fig. 4 when i = 10, point 8 corresponds to deflections of the uncontrolled beam). 

The development of instructions for the operation of the actuators. The instructions for the operation of 
the actuators are obtained from a quantitative analysis of Fig. 4. We shall use the actuatorsA1 andA2. 
In order to write down the instructions, it is necessary to find the coefficients of the convex combinations 
of vectors, specifying a point which belongs to the square D(c). These coefficients will be equal to the 
forcespl andp2, which the actuatorsA1 andA2 must develop, respectively. The values of pl  andp2 are 
shown in Table 1 as a function of the coordinate of the point at which the force F (0.05i) is applied. 

Table 1 
i 0 1 2 3 4 5 6 7 8 9 10 

Pl 0 0.05 0.2 0.47 0.68 1 1 0.84 0.63 0.31 0 
P2 0 0 0 0 0 0 0. i 6 0.44 0.5 0.69 ! 

Note that, except for the case when i = 3, the forces Pl and P2 are not determined uniquely. The 
differences in the determination of the quantitiespl andp2 are proportional to the size of the square 
O(c). 

7. A C A N T I L E V E R  BEAM. E X A M P L E  

Suppose a force (a uniform pressure) F(x, t) = F(t), which is constant along the axis of the beam, is 
applied to the cantilever beam shown in Fig. 2. We consider the problem with the choice of the points 
of observation: Xl = 0.5 and x2 = 1 (the middle and the free end of the beam) and the points for the 
possible siting of the actuators: Yl = 0.25, Y2 = 0.5 and Y3 = 0.75. The boundary conditions have the 
form 

u(0) = u'(0) = 0, u"(1) = u'"(1) = 0 

(the rigid clamping is a tx  = 0 and the free end is a tx  = 1). 
Control is carried out by means of moment actuators. In this case, the fundamental solution is 

determined from the equation 

N Iv = ~ ' ( x - y )  



98 A .G .  Kolpakov 

i=0 

8 i = 5 t 8  

1 

41 4 
7 7 

Fig. 5 

/ 
7 

~8 

We take the constraints on the force of the actuators (1.5) in the form 0 <pj < 1 (a = 0, b = 1). 
The evolution of the polyhedron K(t) when F(x, t) = t/2, t = i = 0, . . . ,  10 (the data for i = 0, 5, 10 

are presented) is shown in Fig. 5. In the case being considered, the polyhedron K(t) contains the point 
0 for all i = 0, . . . ,  10. Consequently, it is possible to achieve zero deflections at the points of observation 
for all loads. It followed from an analysis of the complete set of diagrams, which are partially shown 
in Fig. 5, that, when i < 8, it is possible to use just the actuatorsA1 (at the point y2 = 0.25) andA2 (at 
the point Y2 = 0.5). When i > 8, it is necessary to use all three actuators. 

8. A C T U A T O R S  OF THE 0-1 TYPE 

We will now consider the case when the actuators only have two states: "switched on" (the forcepj -- 1) 
and "switched off" (the force pj = 0). A continuous analogue of this problem is considered in Section 
6. In this case, the problem takes the form 

Ilu}l ~ min, u ~ K(t); K(t) = Y0(t) + ~,yjs j  e R n (8.1) 

where sj take the values zero and unity. 
The minimum in (8.1) is equal to 

c = maxt~ LminullUl[ 

The problem is solved by finding the smallest square D(c) for which the condition 

D(c) n K ( t ) ~ J ,  V t~  L = [0, T] 

is satisfied. 
It is necessary to order the points of the set K(t) with respect to the quantity ]~sj (which is equal to 

the number of non-zero terms in the  sum (8.1), that is, the number of actuators required to realize the 
corresponding state). This ordering enables one to satisfy the requirements of stage 2a of the design 
algorithm. 

Several stages in the evolution of the points K(t) are shown in Fig. 6 for the case considered in 
Section 6 for actuators of the 0-1 type. Point 8 corresponds to deflections of the uncontrolled beam. 
Points 1, 2, and 3 (rank 1) correspond to the operation of a single actuatorA1,A2,A3 respectively, Points 
5, 4, and 6 (rank 2) correspond to the operation of a pair of actuators A 1 + A3, A1 + A2, A2 + A3 
respectively. Point 7 (rank 3) corresponds to the operation of all three actuators. 
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The size of the square D(c) in the problem being considered is determined by the case i = 7 in Fig. 6. 
The scheme for the switching of the actuators is determined by the passage of the system of points K(t) 
across D(c). It follows from an analysis of the complete pattern (i = 0, . . . ,  10) that, when i < 3, there 
is no need to use the actuators. When i = 4, it is necessary to use the actuatorA1 orA2, when i = 5, 6, 
the actuator A1, and, when i = 7, 8, 9, 10, the actuator A2 or A1 and A3. The ratio uf/c = 4.8, see 
Fig. 6 when i = 10. 

The use of controls of the 0-1 type forms the basis of methods of "discrete" optimization [9]. The 
number of possible states of a system with a control of the 0-1 type is comparatively small, which enables 
one to solve the problem using a computer by direct inspection (in combination with standard methods 
for investigating functions for an extremum). A comparison of the relative decreases in the deflection: 
4.8 for discrete optimization and 78 for a continuous control (see Section 6), is indicative of the low 
efficiency of "discrete" optimization compared with continuous optimization. The examples in Sections 
6 and 8 show that the continuous and discrete designs can also be distinguished in their constructional 
part (the different distribution sites of the actuators). 

In the case of continuous designs, the use of inspection to solve the problem is impossible. In the 
example from Section 6, the solution was obtained for n = 3 possible positions of the actuators in the 
case of i = 10 positions of the external load, and a calculation of the forces of the actuators with an 
accuracy of 1/100. The solution of the problem by inspection would require an investigation of the 
function for an extremum 100~I = 107 times and the solution of this problem using a single-processor 
computer would take several hours. In the case of a 0-1 design, 2hi = 80 versions would have to be 
looked through. When n = 6, the solution of the continuous problem by the method of inspection 
becomes practically impossible. 
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